During Merlin’s high angle drilling engineering and operations training courses there are often questions raised about drilling fluid rheology. The amount and type of questions indicate that a simple guide, that demystifies the subject area and terminology used, would be useful. Fluid rheology plays an important role in the drilling success of high angle wells, therefore we hope you find this guide helpful and please get in touch ( Miles.Long@MerlinERD.com ) to let us know if we have missed anything that would be useful to add.
What is viscosity and how is it measured?
Viscosity is a measure of the internal resistance to flow in a fluid, essentially how “thick or thin” it is, which is dependent on the behaviour of the base liquid and the solids in the fluid.
Water and oil are Newtonian fluids, which means that while their viscosity will change with temperature it remains constant for different shear rates. Drilling fluids behave like non-Newtonian fluids, in that their viscosity will change as the shear rate changes. Drilling fluids are designed to be shear-thinning, which means they will have a higher viscosity at lower shear rates and lower viscosity at higher shear rates. In a drilling circulating system shear rate is directly related to the fluid flow rate at any point in the system. At surface the flow is reproduced by using a direct reading viscometer, which generates fluid shear at a set rate by rotating a hollow cylinder in a test cup of fluid, which we will cover in more detail after discussing the Marsh funnel.
The simple approach to measuring the viscosity of a drilling fluid is to use a Marsh funnel (Figure 1), which will provide a measurement that can be used to identify relative changes in viscosity (often referred to as “funnel viscosity”). Funnel viscosity is reported as the length of time in seconds required for the fluid to flow through the funnel and fill a one-quart container.